
On the Complexity of a Self-stabilizing Spanning Tree Algorithm for Large Scale
Systems

Julien Clement∗, Thomas Herault, Stephane Messika and Olivier Peres
{julien.clement,thomas.herault,stephane.messika,olivier.peres}@lri.fr

Univ Paris Sud; LRI; CNRS; INRIA; Orsay F-91405
Bat 490, Universite Paris-Sud, 91405 Orsay Cedex, France

Phone: +33 1 69 15 69 06, Fax: +33 1 69 15 65 86

Abstract

Many large scale systems, like grids and structured peer
to peer systems, operate on a constrained topology. Since
underlying networks do not expose the real topology to the
applications, an algorithm should build and maintain a vir-
tual topology for the application. This algorithm has to
bootstrap the system and react to the arrival and departures
of processes.

In a previous article, we introduced a computing model
designed for scalability in which we gave a self-stabilizing
algorithm that builds a spanning tree. At that time, we pro-
vided a proof of stabilization and performance measure-
ments of a prototypal implementation. In this work, we
present a probabilistic method to evaluate the theoretical
performances of algorithms in this model, and provide a
probabilistic analysis of the convergence time of the algo-
rithm.

Keywords: distributed systems, self-stabilization, over-
lay network, time complexity, probabilistic analysis.

1. Introduction

Large scale systems are made of a large number of ma-
chines linked by a network. In the case of grids or peer to
peer systems, the network is generally based on intercon-
nected local area networks or the infrastructure of Internet
service providers. Nodes communicate with each other us-
ing a network protocol, like IP, that routes the packets hop
by hop.

As a result, it is necessary for large scale systems to op-
erate without knowing the underlying topology. To achieve
this, modern peer to peer systems abstract out the physical
network topology by defining a virtual topology. Two peers
are virtual neighbors if there is a link between them in the

∗Supported by Région Île de France

virtual topology. There may or may not be a physical link
between them.

The normal mode of operation in this context is an over-
lay. Each peer has a unique identifier, which can be an IP
address and a port or drawn from a more specialized address
space, like the codomain of a cryptogaphic function. Know-
ing the identifier of a process is the necessary and sufficient
condition to be able to send it a message. The virtual topol-
ogy itself is usually optimized so that the query run fast, e.g.
in a logarithmic number of hops on a Chord ring[11].

Typically, the virtual topology is built on top of the phys-
ical topology by gossiping. After a boostrapping phase
where each peer knows a given identifier, usually a well-
known peer, all of them periodically exchange their knowl-
edge of peer identifiers and update it based on the informa-
tion they receive. This behavior is modeled by peer sam-
pling services [9]. They allow each node to know a small
number of other nodes, ensuring that the resulting topology
is connected.

This model is different from the usual model used to
write distributed algorithms. Classically, each process
knows the whole set of its neighbors, updated whenever a
node arrives or leaves the system. It can be used directly to
write distributed algorithms that can operate on large scale
systems [8]. The previous works on this subject showed an
algorithm that builds a spanning tree using only a constant
number of process identifiers, with a formal proof of self-
stabilization. Its performance was evaluated on a prototype
implementation.

The experiments showed that the convergence time of the
algorithm varies significantly according to the properties of
the oracle. We therefore present our main contribution: the
expected convergence time of the algorithm using Markov
chains methods [6, 12]. We distinguish between two oracles
with different behaviors: the first one relies on a uniform
distribution of the identifiers and the second one follows a
power law.

2008 14th IEEE Pacific Rim International Symposium on Dependable Computing

978-0-7695-3448-0/08 $25.00 © 2008 IEEE

DOI 10.1109/PRDC.2008.36

48

The rest of the paper is organized as follows. In sec-
tion 2, we discuss related works. We present the compu-
tational model in section 3, the algorithm in section 4, an
adapted model for the probabilistic study in section 5, and
the probabilistic analysis in section 6. We conclude in sec-
tion 7.

2. Related Works and Motivation

The performance of overlay networks in large scale sys-
tems are typically evaluated probabilistically. For example,
the authors of Chord [11] show that the expected number
of steps for lookups on their skip ring is O(logN), where
N is the total number of processes in the systems. Simi-
lar studies were conducted for other overlay networks, like
Pastry [10] or Tapestry [13]. The underlying assumption is
that since the system is very large, the identifiers are well
spread by a hash function and the running time is long, the
whole system globally behaves according to the probabilis-
tic model.

We showed [8] that it is possible to build an overlay net-
work – a spanning tree, in this case – in a large scale system,
while keeping in mind the scalability issues, and provide
a formal proof of self-stabilization under a nondeterminis-
tic scheduler, as opposed to a probabilistic proof of conver-
gence. For this purpose, we introduced a computing model
designed for scalability. By avoiding to provide each node
with a list of its neighbors, it allows to write algorithms that
focus on local operations and make use of an oracle when
necessary, to ensure a global connectivity.

Since it is proven that the algorithm eventually stabilizes
in any execution, the remaining question is its theoretical
performance. We therefore define a probabilistic model and
compute the expected convergence time of the algorithm.

The model distributes the knowledge of the global topol-
ogy in the whole system. In peer to peer systems, this is a
common assumption that is typically implemented using a
peer sampling service. In this context, each process has a
function getPeer() that returns the identifier of another pro-
cess. Using this function, the nodes get to know each other.

In order to study the behavior of an algorithm, we thus
need to characterize the answers of this getPeer() function.
We first take the assumption, widely accepted until recently,
that we can draw process identifiers at random following a
uniform distribution. Then, we switch to the more realis-
tic view that the identifiers follow a power law, i.e. a few
identifiers are greatly favored.

3. Model

The algorithm operates in an asynchronous system
where each process has local variables, a set of guarded

rules and a lossless FIFO link towards all the other pro-
cesses. Processes do not know their neighbors a priori, so
p can send a message to q if and only if the identifier of
q is in a local variable of p. The capacity of each chan-
nel is bounded by an unknown constant, and like Afek and
Bremler [1], we assume that this issue can be addressed by
buffering a constant number of messages if necessary. The
scheduler is nondeterministic and fair in the sense that any
rule whose guard evaluates to true in an infinite suffix is
eventually drawn.

Each process has a unique identifier in a domain I that is
divided into two subdomains Π ⊆ I contains the identifiers
of correct process, i.e. those that do not crash, and the other
identifiers belong to crashed processes or to no process at
all. However, a given process cannot know whether some
i ∈ I is in Π or not. A total order < on I is available, as
on most large scale systems: for example, IP addresses are
totally ordered.

To provide the processes with the ability to connect the
whole system, each of them has a local device called an or-
acle. Each process can query its oracle as part of an action
by calling the function get peer(). The answer is an identi-
fier in I. The global condition on the set of all oracles in the
system is that in an execution, if S is the set of all processes
that query their oracles an infinite number of times, then
all the processes in S eventually obtain all the identifiers of
S. This device is an adapted version of the concept of peer
sampling service, tailored for the needs of the algorithm.

To make it possible to actually use this system, the pro-
cesses need to be able to eventually decide whether a pro-
cess is live or not. Since Fischer, Lynch and Patterson’s
theorem [5] states that the consensus problem is unsolvable
in an asynchronous system where a crash is possible, we use
failure detectors. Each process has one, following the def-
inition given by Chandra and Toueg [2]. This local device
provided a predicate suspect: Π 7→ boolean. In this papers,
all the detectors are in class �P , which means that after a
finite but unknown time, for all processes, ∀p, suspect(p)
=⇒ process p is crashed.

The algorithm makes use of self-stabilization [3]. This
technique, introduced by Dijkstra [3] and since then adapted
to many different contexts [4], allows a system to recover
from any sequence of transient failures. To account for this,
the whole system, comprising the processes and the chan-
nels, is initialized arbitrarily. Then, the runs are failure-free.

4. The Algorithm

This is a simplified version of the algorithm. It is suf-
ficient to understand how the tree is built. The complete
algorithm is given in the previous paper [8].

The goal is to build a spanning tree whose degree is
bounded by a constant δ. To make sure that there can be no

49

cycle, the algorithm enforces a global invariant: the iden-
tifier of each process is higher than those its children and
lower than that of its parent.

Each process has local variables, an identifier (myself)
and a set of guarded rules.

5. Model for the Probabilistic Study

The above model is well suited for a proof of conver-
gence in all possible cases. However, for a probabilis-
tic study of the convergence time, we switch to a simpler
model.

First, we assume the existence of a mapping from Π to
N∗ that assigns consecutive integers to the processes. The
process that has the lowest identifier in Π gets number 1, the
immediately higher process gets 2, and so on. The highest
process is numbered N . This mapping, which is normally
not available in a large scale system, is only used for the
presentation of the probabilistic analysis and not by the al-
gorithm. We also assume that only the identifiers of live
processes are drawn; this does not change fundamentally
the results but makes the following explanations easier to
understand.

Then, we switch to a new scheduler that uses a coarse-
grained notion of rounds. Rounds are the time unit in the
rest of this paper.

Definition 1 (Round). A round is a minimal sequence of
consecutive events during which each process executes its
spontaneous guarded rule at least once and all the messages
that this produces are received.

The existing proof of self-stabilization allows us to
switch to this definition since it implies that the number of
actions in a round is necessarily finite.

We define the start of round 1 as the first action in an
execution and, recursively, the start of round i > 1 as the
first action following the last action of round i− 1.

6. An Upper Bound on the Convergence Time

We divide the discussion according to the value of δ, the
bound on the degree of the spanning tree we are building.
Nevertheless, we follow the same guiding thread for the dif-
ferent cases. The idea, as proposed by Gouda [7], is to de-
fine a metric over the set of configurations. Indeed, usually,
in order to prove that a randomized self-stabilizing algo-
rithmA reaches a set L of legal configurations in finite time
with probability 1 starting from an arbitrary initial config-
uration, one exhibits a potential function that measures the
distance of any configuration to L, such that this potential
function decreases with non-zero probability at each step of
A. In each subsection, we define an appropriate metric (po-
tential function) according to δ, the bound on the degree.

Variables
parent: Π ∪ {⊥} (⊥ means no value)
children: set of Π
Guarded rules
the spontaneous rule, in practice, is regularly triggered by
the scheduler and mostly takes care of cleanup and
connectivity.
true→

delete any incorrect child: greater than
myself, cardinal of the child set bigger
than δ, suspect child ;
if father = ⊥ (i.e. this process is root),
pick a process given by the oracle and
send it a message to try to merge the
subtrees.

reception of a merge message
merge message available→

if this process is root and lower than
the sender, it sends back a merge agree-
ment message and take the sender as its
new parent.

reception of a merge agreement message
merge agreement message available→

If possible, take the sender as a child. If
there are already δ children, first delete
a child lower than the sender. If all
δ children are higher than the sender,
pass the merge agreement down to one
of the children.

link maintenance
true→

Send a keepalive message to parent and
children

keepalive message available→
if the sender neither parent nor a child,
take it as my new parent or child, if
possible ; else send back a link rupture
message. On reception of such a mes-
sage, delete the sender from the chil-
dren list or the parent field.

50

N N-1 N-2 2 1 0...

1

N

2

N

3

N

N−2

N

N−1

N 1

N−1

N

N−2

N

N−3

N

2

N

1

N 1

Fig. 1.Model for δ = 1

If possible, I take the sender as a child. If I already have δ children, I first delete a
child lower than the sender. If all δ children are higher than the sender, I pass the merge
agreement down to one of my children.

link maintenance

true→
Send a keepalive message to my parent and children

reception of a keepalive message→
if the sender is my parent or my child, do nothing. If not, take it as my new parent

or child, if possible ; else send back a link rupture message. On reception of such a

message, delete the sender from the children list or the parent field.

5 Model for the probabilistic study

The above model is well suited for a proof of convergence in all possible cases. How-

ever, for a probabilistic study of the convergence time, we switch to a simpler model.

First, we assume the existence of a mapping from I to N∗ that assigns consecutive

integers to the processes. The process that has the lowest identifier inΠ gets the number

1, the immediately higher process gets 1, and so on. The highest process is numberedN .
This mapping, which is normally not available in a large scale system, is only used for

the presentation of the probabilistic analysis and not by the algorithm. We also assume

that only the identifiers of live processes are drawn; this does not change fundamentally

the results but makes the following explanations easier to understand.

Then, we switch to a new scheduler that uses a coarse-grained notion of rounds. Rounds

are our time unit in the rest of this paper.

Definition 1 (Round). A round is a minimal sequence of consecutive events during

which the following happens:

1. each process executes its spontaneous guarded rule at least once ;

2. all messages sent as part of (1) are received and the corresponding guarded rules

are executed ;

3. all message sent as part of (2) are received and the corresponding guarded rules

are executed. This applies recursively to the duplicated merge agreement messages.

Figure 1. Model for δ = 1

10

9

8

2

1

7

4

1

10

1

10

1

10

7

10

Fig. 2. Example: δ = 1, N = 10, Number of processes at their right place= 3. Insertion of a

subtree.

We modelise our problem as shown in figure 1, where a state represents the number of

processes that are not at their right place.

During each round, the process with the highest identifier that is not in the final tree

queries the oracle and has a nonnegative probability to join the final tree. For example,

let us assume there are k processes at the wrong place. Thereforewe know that there are
already N − k processes in the tree. When P0, the process with the highest identifier

N − k − 1 not in the final tree, executes the algorithm, if the oracle answers one of
the N − k process with a bigger identifier then P0 joins the final tree otherwise, noth-

ing happens. Therefore it is enough that the oracle chooses one of the N − k process
with a higher identifier for the metric to decrease. Such an event has a probability of

(N − k)/N to occur. The reader may easily notice that it is the worst scenario.

An example is shown on figure 2.We see thatµ = 10−Number of processes at their right place =
10 − 3 = 7. Then the process with the identifier 7 sends a message to the process with
the identifier 9. This means that after having queried its oracle, the answer was the pro-
cess with the identifier 9. According to the algorithm, the maximal degree of the tree
being reached, process 9 looks at the identifier of his son. Its child has an identifier
higher than 7. Therefore the new process will not replace its son, in fact the information
is passed down to the process with the identifier 8. This one has a child with a lower
identifier than 7, so a replacement occurs.

Figure 2. δ = 1, N = 10, Number of processes
at their right place= 3. Insertion of a subtree.

Once the metric reaches its minimum, the system has con-
verged.

In two separate subsections, we consider first an oracle
that uses a uniform distribution, then an oracle that follows
a power law.

6.1. Uniform distribution

In this section, we assume that the oracle may choose
each identifier with probability 1/N .

10

9

8

7

4

2

1

Fig. 3. Example: δ = 1, N = 10, Number of processes at their right place= 4. After the insertion:

the metric has decreased.

The result is shown on figure 3, where µ = 10 − 4 = 6.
To compute the expected time for µ to reach its minimum, we introduce the following
stochastic process :

∀ k ∈ N Xk = Nber of processes not at their right place at time k

Proposition 1. (Xn)n∈N is a Markov Chain.

Sketch of proof of correction :

We easily observe that the number of processes correctly placed on the tree at time t+1
only depends on how many of them were at their right place at time t
In order to compute the convergence time, we need the following definition.

Definition 2. We define the mathematical expectation of the time needed for the chain

to reach state k, knowing its initial position was l:

∀k, l ∈ [0, . . . , N] T l
k = E [x\Xx = k knowing X0 = l] .

According to these definitions, we obtain the following induction formula:

T k+1
0 = 1 +

N − k

N
T k

0 +
k

N
T k+1

0

Figure 3. δ = 1, N = 10, Number of processes
at their right place= 4. After the insertion: the
metric has decreased.

6.1.1 Case δ = 1

Since δ = 1, each node may have only one son. There-
fore, the main idea is that only one tree is a solution to the
problem. It is in fact a chain of processes, ranked from the
highest identifier to the lowest. We define that a process is
at its right place iff 1) the root of its tree is Max and 2) its
parent is the smallest higher process and its child is either⊥
or the highest lower process. Once a process is at his right
place, it will never change position. We define the follow-
ing metric: µ =(Number of processes that are not at their
right place).

Let us study the worst scenario: during each round, only

51

one process joins the final tree, so that the number of pro-
cesses at their wrong place decreases by one at each round.
We model the problem as shown in figure 1, where a state
represents the number of processes that are not at their right
place.

During each round, the process with the highest identi-
fier that is not in the final tree queries the oracle and has a
non-zero probability to join the final tree. For example, let
us assume there are k processes at the wrong place. There-
fore we know that there are already N − k processes in
the tree. When P0, the process with the highest identifier
among the N − k − 1 processes not in the final tree, exe-
cutes the algorithm, if the oracle answers one of the N − k
process with a higher identifier, then P0 joins the final tree.
Otherwise, nothing happens. Therefore, it is enough that
the oracle chooses one of the N − k process with a higher
identifier for the metric to decrease. Such an event has prob-
ability (N − k)/N to occur.

An example is shown on figure 2. We see that µ = 10-
Number of processes at their right place = 10-3 = 7. Then
process 7 sends a message to process 9. This means that
after having queried its oracle, the answer was 9. Accord-
ing to the algorithm, the maximal degree of the tree being
reached, process 9 looks at the identifier of his son. Its child
has an identifier higher than 7. Therefore the new process
does not replace its son; instead, the information is passed
down to process 8. This one has a child with a lower iden-
tifier than 7, so a replacement is done. The result is shown
on figure 3, where µ = 10− 4 = 6.

To compute the expected time for µ to reach its mini-
mum, we introduce the following stochastic process: ∀k ∈
N, Xk = Number of processes not at their right place at
time k.

Proposition 1. (Xn)n∈N is a Markov Chain.

Proof sketch: It is easy to see that the number of pro-
cesses correctly placed on the tree at time t+1 only depends
on how many of them were at their right place at time t.
Remark 1. This ensures that the algorithm converges with
probability 1.

Definition 2. The expected time for the chain to reach
state k, knowing its initial position was l, is: ∀k, l ∈
[0, . . . , N], T lk = E [x|Xx = k knowing X0 = l].

Using these definitions, we obtain the following induc-
tion formula: T k+1

0 = 1 + N−k
N T k0 + k

N T
k+1
0 which

leads to (T k+1
0 − T k0) = N

N−k . After summing from 0
to N − 1 (we notice that T 0

0 = 0), we have: TN0 =
N
∑N−1
i=0

1
N−i ∼N 7→+∞N log (N).

6.1.2 Case δ = N

This is the second marginal case. We need to define a dif-
ferent metric: µ = (N − Identifier of the smallest root).

The tree is built as soon as there is only one root, i.e.
when the identifier of the smallest root is N , thus when
µ = N − N = 0. Again, we study the worst-case sce-
nario, i.e. at each round only the smallest root joins the
final tree. This is illustrated in figure 4, where a state rep-
resents the identifier of the smallest root. Assume k is the
smallest root: when k queries the oracle, it is enough that
it answers one of the N − k higher identifiers for the met-
ric to decrease. This justifies the probability transitions that
appear on the figure.

We introduce the following stochastic process to com-
pute the expected time for µ to reach 0: ∀k ∈ N, Xk = the
identifier of the smallest root at time k.

Proposition 2. (Xn)n∈N is a Markov Chain.

The proof is similar to that made in the case δ = 1.
The computation of the convergence time is sim-

ilar to what we did in the case δ = 1. Us-
ing the previous definition: ∀k ∈ [0, . . . , N] T kN =
E [x|Xx = N knowing X0 = k], we obtain: T kN = 1 +
N−k
N T k+1

N + k
N T

k
N which leads to (T kN − T

k+1
N) = N

N−k .
Therefore, the expected convergence time is T 0

N =
N
∑N−1
i=0

1
N−i ∼N 7→+∞N log (N).

On the example given in figure 5, we see that the process
with the smallest identifier has a non-zero probability to join
the tree.

6.1.3 Case 2 ≤ δ ≤ N − 1

We now turn to the main case, that is 2 ≤ δ ≤ N−1. We de-
fine the following metric: µ = (Number of roots,identifier
of the smallest root).

The minimum of this metric is (1,N). When it is reached,
there is exactly one root, namely Max, and convergence is
achieved. This metric cannot increase since it is not pos-
sible in the algorithm to drop two children simultaneously.
We now show why it decreases. The idea is that during each
round, either the first component decreases, or the second
one does. If the number of roots decreases then, obviously,
the metric decreases. Otherwise, a root tried to join a tree
and took the place of another process. According to the al-
gorithm, a process can only replace a child p with a process
q s.t. q > p. This indicates that the new root necessarily has
a smaller identifier than that of the former root. The second
component of the metric decreases.

Figure 6 shows the possible cases for the insertion of a
subtree into the main tree.

We can now compute the expected time before this met-
ric reaches its minimum. The worst case goes as follows:
the first component stays constant until the second one
reaches its minimum, then the number of roots (the first
component of the metric) decreases by 1 and the second
reaches its ”new” maximum, and so on.

52

1 2 3 N-1 N...
1

N−1

N

N−2

N

2

N

1

N

0
1

N

2

N

N−1

N 1

Fig. 4.Model for δ = N

which leads to (T k+1
0 − T k

0) = N
N−k .

After summing from 0 to N − 1 (we notice that T 0
0 = 0) we have:

T N
0 = N

N−1
∑

i=0

1

N − i
∼

N "→+∞

N log (N)

b) δ = N

This is the second marginal case. We need to define a different metric :

µ = (N − Identifier of the smallest root). The tree is built as soon as there is only one
root, i.e when the identifier of the smallest root is N , i.e when µ = N − N = 0. Again
we study the worst scenario i.e, at each round only the smallest root joins the final

tree. This scenario is illustrated in figure 4 where a state represents the identifier of the

smallest root. Assume k is the smallest root, when it queries the oracle, it is enough that
it answers one of the N − k higher identifiers for the measure to decrease. This fact
justifies the probability transitions’ that appear on the figure.

Once again, we introduce a stochastic process to compute the expected time for µ to
reach 0 :

∀ k ∈ N Xk = the identifier of the smallest root at time k

Proposition 2. (Xn)n∈N is a Markov Chain.

Sketch of proof of correction :

The proof is analog as the one made in the case δ = 1
The computation of the convergence time is similar to what we did in the case δ = 1.

Using the previous definition:

∀k ∈ [0, . . . , N] T k
N = E [x\Xx = N knowingX0 = k]

We obtain:

T k
N = 1 +

N − k

N
T k+1

N +
k

N
T k

N

Figure 4. Model for δ = N

which leads to (T k
N − T k+1

N) = N
N−k

.

Therefore :

T 0
N = N

N−1
∑

i=0

1

N − i
∼

N "→+∞

N log (N)

9

1 8 7 3

5 2

10

6

4

1

10

1

10

1

10

1

10
1

10

1

10

4

10

Fig. 5. Example for δ = N

On the example given in figure 5, we see that the process with the smallest identifier

has a non-null probability to join the tree.

c) 2 ≤ δ ≤ N

Now we look at the main case, that is δ = N ≥ 2. In order to do so, we define the
following metric:

µ = (Number of roots,N− Identifier of the smallest root)

First of all, the reader may notice that, according to the algorithm, it is not possible for

one process to drop simultaneously two of its children. Therefore, our metric can not

increase.

Let us explain why this metric is always decreasing. The idea is that during each round,

either the first component decreases, or the second one does.

Figure 5. Example for δ = N

Therefore, in order to compute the worst-case conver-
gence time, we need evaluate the time needed for the sec-
ond component of the metric to reach its minimum, i.e. the
time after which no process smaller than the smallest root
can become root. In order to study the convergence time,
we split the calculations into two phases.

When we studied the case where δ = N , we showed
that any process k becomes the smallest root in the sys-
tem in at most (N − k) log (N − k) rounds. Thus, since
at most N processes will go through this number of rounds,
the total convergence time is equivalent to: N+

∑N
k=0(N−

k) log (N − k)∼N 7→∞N2 log (N).

Proof sketch: The idea is to use the equivalence between
sum and integral:

∑N
k=0(N − k) log (N − k)∼N 7→∞

∫ N
0
x log xdx.

We obtain:
∫ N
0
x log x =

[
x2 log x

]N
0
−
∫ N
0
xdx, which

is enough to lead to the result.

6.2. A more realistic distribution

In a state-of-the-art large scale system, the global knowl-
edge of the whole set of process identifiers is distributed
among all the processes. The usual device that connects the
processes to the rest of the system is a peer sampling ser-
vice. It provides each process with a small set of live pro-
cess identifiers and ensures that the global knowledge graph
is connected.

As a result, in the global overlay, each process has a
small number of direct neighbors, which in turn know a
small number of other processes. Therefore, a realistic or-
acle based on such a service should give each process p a
very high probability of obtaining the identifiers of a small
set of processes, which can be seen as close to p, and a very
low, but non-zero, probability of obtaining any other pro-
cess.

The choice of close processes follows practical require-
ments. It is desirable for large scale systems to be self-
organizing, i.e. not relying on human intervention to build
their overlay. They should also be self-optimizing, mean-
ing that they improve their structure on their own to achieve

53

– If the number of roots decreases then, obviously, the metric decreases.

– Let us assume that the number of roots stays constant. This means that, when a root

tried to join a tree, it took the place of another process. According to the algorithm,

we know that a process can only replace a child p with a process q s.t. q > p. This
fact indicates that the new root necessarily has a smaller identifier than the one of

the former root. The second component of the metric decreases.

Figure 6 illustrates the possible cases for the insertion of a subtree into the main tree

and figure 7 shows that as a result, the metric decreases.

10

9 8

1 2 3 4

7

65

1

10

1

10

1

10

7

10

Fig. 6. Insertion of the subtree rooted in 7 into the main tree

Now we can compute the time before this measure reaches its minimum. The worst

case goes as follows:

– The first component stays constant until the second one reaches its minimum

– Then the number of roots (the first component of the measure) decreases by 1 and
the second reaches its ”new” maximum, and so on.

Figure 6. Insertion of the subtree rooted in 7 into the main tree

better performances. The notion of good performance is de-
fined on a per-system basis: the metric to be minimized be-
tween any two virtual neighbors can be the number of hops
in the underlying network, geographical distance, latency,
or cost. An algorithm using the peer to peer system should
thus, in turn, try to reduce its number of hops in the virtual
topology.

In this section, the answers of the oracle are distributed
as follows: k ∈ J1, bN2 cJ and α ∈]0, 1[are given. If process
i queries the oracle, it returns process j with probability pij
such that pij = α/2k if |i−j| ≤ k mod(N), (1−α)/(N−
2k) otherwise.

The main idea is to give α a large value (close to 1) to
introduce a bias in favor of the nearby processes.

In order to complete the complexity study, we must now
compute the convergence time of the protocol assuming that
the oracle follows this distribution. To simplify the calcula-
tions, we assume without loss of generality that k is 1.

6.2.1 Case δ = 1

We use the same metric as for the uniform distribution:
µ =(Number of processes that are not in their right place).
This measure converges toward 0. We now compute the
convergence time.

We define βk = α
2 + N−k−1

N−2 (1− α).
Using the same technique as in the previous calculations,

i.e. estimating the time to reach 0 knowing that we started
from k we obtain that

T k+1
0 = 1 + βkT

k
0 + (1− βk)T k+1

0

So: T k+1
0 − T k0 = 1

βk
. By summation over k, we obtain

TN0 ∼ Nln
2 + α

2− α
We observe that convergence is achieved faster. More-

over, once a process asks the oracle for a new value, it has
a greater chance to obtain exactly the right one (i.e. the im-
mediately higher identifier), which decreases the number of
delays in the algorithm.

6.2.2 Case δ = N

Again, we reuse the same metric: µ =(N -Identifier of the
smallest root) in order to compute the convergence time.

The scenario is exactly the same as in the previous sec-
tion. We compute by summation T 0

N . The convergence time
towards N for µ is:

T 0
N ∼ Nln

2 + α

2− α
which is once again better than the convergence time in the
uniform distribution case.

6.2.3 Case 2 ≤ δ ≤ N − 1

This case is more complex, but we take again the same met-
ric: µ =(Number of roots, Identifier of the smallest root).

As usual, the second component of the metric first de-
creases to its minimum, then the first one decreases.

In the same way, the convergence time is equivalent to
ln 2+α

2−α
∑k=N
k=0 (N − k), which is equivalent to

N2 ln
2 + α

2− α

54

δ = 1 1 < δ < n δ = n
uniform

O(n log n) O(n2 log n) O(n log n)distribution
power law

O
(
n log 2+α

2−α

)
O
(
n2 log 2+α

2−α

)
O
(
n log 2+α

2−α

)
distribution

Figure 7. Results summary

Here again, the convergence time is slightly better. This
improvement in the convergence time is an encouraging re-
sult from a practical point of view since this kind of result
distribution is easier to implement on actual peer to peer
systems.

7. Conclusion

We studied the probabilistic convergence time of a self-
stabilizing spanning tree algorithm for large scale systems.
This contribution is important because the whole point of
switching to a model that replaces the usual neighbor list
with an oracle and a failure detector is scalability, but its
main shortcoming was the difficulty of characterizing the
behavior of an algorithm under a given oracle.

The results are summarized in figure 7. We first showed
how the algorithm behaves under the standard hypothesis
that a process could learn the identity of its peers follow-
ing a uniform distribution. Then, we switched to the more
realistic hypothesis that the underlying topology is a small
world network in which peers are discovered following a
power law, where convergence is achieved faster.

References

[1] Yehuda Afek and Anat Bremler. Self-stabilizing uni-
directional network algorithms by power-supply. In
Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA97), pages 111–
120, 1997.

[2] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. Jour-
nal of the ACM, 43, March 1996.

[3] Edsger W. Dijkstra. Self stabilizing systems in spite
of distributed control. Communications of the Associ-
ation of the Computing Machinery, 17(11):643–644,
1974.

[4] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[5] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

[6] Laurent Fribourg, Stéphane Messika, and Claudine Pi-
caronny. Coupling and self-stabilization. Distributed
Computing, 18(3):221–232, February 2006.

[7] Mohamed G. Gouda. The triumph and tribulation
of system stabilization. In WDAG95 Distributed
Algorithms 9th International Workshop Proceedings,
Springer LNCS:972, pages 1–18, 1995.

[8] Thomas Herault, Pierre Lemarinier, Olivier Peres,
Laurence Pilard, and Joffroy Beauquier. A model for
large scale self-stabilization. In 21st IEEE Interna-
tional Parallel & Distributed Processing Symposium
(IPDPS), 2007.

[9] Márk Jelasity, Rachid Guerraoui, Anne-Marie Ker-
marrec, and Maarten van Steen. The peer sam-
pling service: experimental evaluation of unstructured
gossip-based implementations. In Middleware ’04:
Proceedings of the 5th ACM/IFIP/USENIX interna-
tional conference on Middleware, pages 79–98, New
York, NY, USA, 2004. Springer-Verlag New York,
Inc.

[10] Antony Rowstron and Peter Druschel. Pastry: Scal-
able, distributed object location and routing for large-
scale peer-to-peer systems. In IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms
(Middleware), pages 329–350, November 2001.

[11] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
In SIGCOMM ’01: Proceedings of the 2001 confer-
ence on Applications, technologies, architectures, and
protocols for computer communications, pages 149–
160, New York, NY, USA, 2001. ACM Press.

[12] G. Winkler. P. brémaud: Markov chains: Gibbs fields,
monte carlo simulation, and queues. springer verlag,
1999 - reviewed for metrika.

[13] Ben Y. Zhao, Ling Huang, Sean C. Rhea, Jeremy Stri-
bling, Anthony D Joseph, and John D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for rapid
service deployment. IEEE J-SAC, 22(1):41–53, Jan-
uary 2004.

55

